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Abstract
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using
the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation.
The algorithm gives insights into the role of correlation through visualization of two-particle
probability densities, instantons, and the correlation hole. We map the problem to the Hubbard
model and see that exchange and correlation renormalize the model parameters, dramatically
reducing the effective on-site repulsion at larger separations.

(Some figures in this article are in colour only in the electronic version)

Lattice models are popular in solid state physics and often
serve as simple models for atomic orbitals, especially in the
theory of magnetism [1]. Quantum dot arrays and optical
lattices are new realizations of lattices. These artificial
lattices are candidates for quantum computers, where spins
on exchange-coupled dots are qubits for universal quantum
computation [2, 3]. A fundamental concept is intersite
exchange, in which virtual hopping leads to spin coupling of
neighboring sites. A two-site model is one of the simplest
quantum problems, yet the quantitative mapping from a three-
dimensional model of a double dot or optical lattice experiment
to an effective two-site model has many subtleties requiring
careful treatment of exchange and correlation [1, 3–6].

In this paper we use path integral Monte Carlo (PIMC)
to extract accurate singlet–triplet splitting from a spatial
model. Similar PIMC algorithms have been used to study
spin dynamics in 3He [7–9] and Wigner crystals [8, 10],
and the approach is particularly simple for two-site models.
This two-particle problem has been previously solved with
direct diagonalization (DD) methods with a careful choice
of basis functions [4, 6] and is amenable to variational or
diffusion quantum Monte Carlo (QMC) [11]. However, the
simple and elegant PIMC approach is a more direct solution

4 http://shumway.physics.asu.edu.

without variational bias or basis set issues and offers theoretical
insights into this important problem. We first show that
the splitting energy, J , is easily extracted from the average
permutation of the two-particle path integral, even when J �
kBT . This PIMC algorithm is a black-box calculator, providing
accurate numerical estimates of J for technologically relevant
models of dots or optical lattices with arbitrary interactions and
confinement potentials. More importantly, PIMC allows us to
ask questions about quantum correlation. For example, do the
particles exchange across the barrier simultaneously, or do they
briefly double occupy the dot? Or, does the motion of one
particle over the barrier correlate with the location of the other
particle? We answer these questions by viewing representative
trajectories (instantons) for a double dot and calculating pair
correlation functions. Magnetic fields are known to modulate
J [3, 4, 6], and we show how to include them in PIMC
with a simple Berry’s phase [12]. Finally we model recent
experiments of exchange coupled atoms in an optical trap,
demonstrating broader utility [13].

The mapping from a continuous model with interacting
particles to a lattice model introduces subtle complications.
For a non-interacting system it is reasonable to reduce the
Hilbert space to just one orbital per site, coupled by a hopping
matrix element, t . The non-interacting many-body ground
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state is a product state of these single-particle orbitals. Low
energy excited states are spanned by this basis, so an effective
lattice model is an excellent approximation. Interactions are
typically added to this lattice model as on-site energies, U ,
or intersite terms, V . For small t , this gives the well-known
J = 4t2/(U − V ).

There can be a serious flaw when considering interactions
in this order. When interactions are added to the continuum
Hamiltonian, correlation enters as virtual excitations to higher
energy orbitals. At first this seems insignificant, since there
may be still a one-to-one mapping to an effective lattice model.
But, when choosing effective lattice parameters, one must
remember that many-body states in the continuum model have
quantum fluctuations that are simply not present in the lattice
model.

As a specific example, consider two electrons in a double
quantum dot. This system is often represented as a two-site
Hubbard model, where the sites represent the 1s ground states
of the dots. Correlation terms involve virtual excitation of the
electron to the 2px and 2py states of the dots. These quantum
fluctuations create van der Waals attraction, in addition to
mean-field repulsion. Van der Waals attraction and other
correlations renormalize the interaction parameters to new
values, Ur and Vr.

When we consider hopping between sites, more
complications emerge. The hopping barrier has contributions
from both the external potential and electron–electron
interactions. While the mean-field Hartree contribution can
simply be added to the effective potential, the fluctuating part
is not so trivial. In the transition state, an electron passes over a
barrier whose height has quantum fluctuations. Thus we expect
interactions to renormalize the hopping constant, tr. At the
Hartree–Fock level, Hund–Mulliken theory already predicts
a renormalized tr and Ur due to long-range exchange [1, 3].
However, neglect of correlation in Hund–Mulliken theory can
lead to catastrophic failure at intermediate dot separations [6].
PIMC includes all correlations, and illuminates their role in
barrier hopping with the concept of instantons.

We start with the two-dimensional model for the GaAs
double quantum dot studied in [6],

H = p2
1

2m∗ + p2
2

2m∗ + e2

ε|r1 − r2| + Vext(r1) + Vext(r2), (1)

with m∗ = 0.067me and ε = 12.9. The external potential
comes from two piecewise-connected parabolic potentials,

Vext(r) = 1
2 mω0{min[(x − d)2, (x + d)2] + y2}, (2)

with minima at x = ±d . We report d relative to the
oscillator length r0 = √

h̄/mω0. The two lowest energy
two-electron states are spatially symmetric and antisymmetric
under exchange, with energies ε+ and ε−, respectively. The
exchange coupling, J = ε− − ε+, has been calculated
previously using DD on a basis of Fock states built from
seven single particles states [6]. Much care was taken to test
convergence with the number of states and careful evaluation
of Coulomb matrix elements. We note that the same quality of
DD calculation in three dimensions would typically take more
single-particle states.

QMC techniques give essentially exact answers to many
problems without basis set convergence issues, and often work
just as easily in multiple dimensions. PIMC is nice for
quantum dot problems [14] because it does not require a trial
wavefunction. However, direct calculation of either ε+ or
ε− with PIMC often have large statistical errors in energy
(∼1 meV in dots). Instead, we use particle exchange statistics
to estimate energy differences J to high accuracy (∼1 μeV) in
PIMC.

To calculate J , we split the partition function into
terms that are spatially symmetric and antisymmetric under
exchange, Z = Z+ + Z−. These terms can be expressed
as symmetrized or antisymmetrized imaginary time path
integrals [15, 16], (see appendix),

Z± = 1
2!

∑

P=I,P
(±1)P

∫
DR(τ )e− 1

h̄ SE[R(τ )]. (3)

This is a sum over all two-particle paths R(τ ) with the
boundary condition R(βh̄) = P R(0), (P = I,P), where
P swaps particle positions and I is the identity. The symbol
(±1)P takes the values (±1)I = 1 and (±1)P = ±1. At
low temperature, only one state contributes to each partition
function, so Z± = e−βε± . Thus,

e−β J = Z−
Z+

=
∑

P

∫ DR(−1)P e− SE
h̄

∑
P

∫ DRe− SE
h̄

≡ 〈(−1)P〉+, (4)

or J = −kBT ln〈(−1)P〉+. Thus the exchange coupling
can be calculated by sampling a symmetric (bosonic) path
integral [16] and taking the average of (−1)P , which is +1
for identity paths and −1 for exchanging paths.

We ran PIMC simulations [16] with our open-source pi
code for the dots studied in [6], with the results shown in
figure 1(a). To aid other researchers, we have made the
simulation available as a tool on nanoHUB [17]. Coulomb
interactions are included with a pair action that correctly
handles the cusp condition. We observed convergence of the
path integral results with 6400 discrete slices, but a higher-
quality pair action [16] could require fewer slices. We see near
perfect agreement with DD, and speculate that small deviations
may be due to the finite basis in the DD calculation or
approximations in the evaluation of Coulomb matrix elements
at larger d [6].

To learn more, we collect the two-particle density,
ρ(x1, x2), which is the probability to find one electron at x1

and the other at x2, integrated over all values of y1 and y2,
and shown in figure 2(b). We calculate double occupation, xD,
which we define as the probability for the electrons to lie on
the same side of the x = 0 plane. From J and xD we deduce
renormalized values for tr and Ur − Vr, figures 1(c) and (d).
Interactions renormalize tr to smaller values, consistent with
Hund–Mulliken theory or a larger renormalized mass. The
larger J arises from the dramatic decrease in Ur − Vr at larger
dot separations, as correlation enables more virtual hopping.

There are two minima, (x1, x2) = (±d,∓d), in the
total potential, marked ‘+’ in figure 2(b). For non-zero J ,
some paths must go between these minima. In a semiclassical
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Figure 1. PIMC results. (a) Exchange couplings J for h̄ω = 4 meV
(•) and h̄ω = 6 meV (◦) double dots with a piecewise parabolic
potential (inset). Dashed lines are direct diagonalization results
from [6]. (b) The double dot occupation probability x . Using J and
x we fit (c) tr and (d) Ur − Vr parameters for an effective two-site
Hubbard model. Dashed lines in (c) show the bare hopping t for one
electron in the double dot. Dashed lines in (d) are V − U with
V = e2/2εd and U taken from a PIMC calculation on a single dot.

picture, the paths fluctuate around the potential minima, with
rapid crossings called instantons, in which particles exchange
between the dots. An instanton can involve brief double
occupation of a dot, illustrated in figure 2(a), or simultaneous
exchange, as in figure 2(c). Figures 2(d) and (e) show
paths from PIMC that resemble the idealized instantons. In
figure 2(b), one instanton moves from the (d,−d) minimum,
briefly double occupies the left dot, (−d,−d), then moves to
the (−d, d) minimum, while the other instanton moves directly
between the two minima.

Contours of ρ(x1, x2), figure 2(b), reveal a trend with
increasing dot separation. For small d the highest probability
is directly between the minima (simultaneous exchange), but
at larger d the highest probability has two pathways (brief
double occupation). Figure 3 shows the probability density
for crossing, ρ(x, x). Crossing is most likely in the middle
(x = 0) when the dots are close together. For larger d , the
crossing probability has a double peak near the dots that is
about twice the value at x = 0. The double peaks are slightly
larger for the wider h̄ω = 4 meV dot, indicating more double
occupation.

To underscore the presence of electronic correlation
during tunneling, we plot the correlation hole in figure 4, with
PIMC results next to DD results [6]. While some quantitative
differences are apparent, consistent with the finite basis size
in DD, the overall agreement is quite good. The message is
clear: in the instanton, as one electron moves between the dots,
the other electron moves away, enhancing the instanton and
increasing J .

For charged particles, magnetic fields can be used to
tune the exchange coupling and even change its sign [3, 18].

Figure 2. Paths and pair densities for a double dot. (a) Simplified
instanton with double occupation of the right dot. (b) Pair densities
ρ(x1, x2) with the lowest density contour line that connects both
potential minima (+ markers) at (±d,∓d). (c) Simplified instanton
with simultaneous exchange. (d) Actual path showing double
occupation, sampled from h̄ω = 4 meV, d = 1.5r0 dots. (e) Actual
path showing simultaneous exchange, sampled from h̄ω = 6 meV,
d = r0 dots. Trajectories (d) and (e) are also plotted in (b).

Figure 3. Crossing density, ρ2(x, x), equivalent to the diagonal of
the pair densities in figure 2(b).

In the path integral, a magnetic field is easily implemented
as a Berry’s phase q�B, where q is the electron charge
and �B is the total magnetic flux enclosed by the path
of the two electrons. The exchange splitting is then
J (B) = −kBT ln(〈eiq�B (−1)P〉+/〈eiq�B〉+). The quantities
are averaged from the bosonic path integral with no field, so
data for different B-fields may be collected simultaneously.
For very large magnetic fields the expectation value in the
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Figure 4. Conditional density of one electron when the other electron
is in the white box, showing the correlation hole during an instanton.
Panels (a)–(c) are the h̄ω = 4 meV, d = 1.5r0 dots and (d)–(f) are
the h̄ω = 6 meV, d = 1.0r0 dots. Numerical factors are the
likelihood of the first electron being in the white box. PIMC results
are shown on the left of each image, with DD results [6] on the right.

Figure 5. Magnetic field dependence included with a Berry’s phase
for several double quantum dots.

denominator is small and Monte Carlo sampling errors are
catastrophic. In practice, we find that fields up to 4 T in
strength are practical for the geometries we study, yielding the
results in figure 5.

To test the applicability of the method to an optical lattice,
we consider the exchange of two 87Rb atoms in a double-
well optical trap [13]. This system resembles the double dot,
only with much heavier particles, a much lower temperature,
short-range interactions, and a different confining potential.
While the experiments in [13] have very little correlation, we
present results to demonstrate feasibility for such systems,
which can be made more strongly interacting. The experiment
has a double-well potential, V (x) = Vlong sin2(πx/λ) +
Vshort cos2(2πx/λ), with λ = 765 nm and Vlong = 10Er,
where Er = h2/2MRbλ

2 [13]. We model interactions as
V (r) = V0sech2κr with V0 = 50.5 μK and κ = 0.1 nm−1 to

Figure 6. Spin splitting of 87Rb atoms trapped in a double well: ×,
PIMC results at 10 nK, and ◦, experimental data [13]. Insets show
atomic probability densities.

reproduce the 87Rb scattering length. Figure 6 shows J as the
barrier Vshort is varied, confirming agreement with experiment.

In conclusion, we have demonstrated a PIMC algorithm
for computing exchange splitting in double quantum dots
and optical lattices. The exchange splitting arises from
instantons in the path integral, and we have collected data
on these path crossings, including double occupation and the
correlation hole. Correlations renormalize tr and Ur − Vr,
with a dramatic decrease in Ur − Vr at large separation. We
find that simultaneous crossing occurs more often with closely
spaced dots, while further separated dots are more likely to
have instantons with double occupations. Finally, we have
demonstrated the versatility of the algorithm with the inclusion
of magnetic fields and applications to laser-trapped atoms.
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Appendix. Form of the discretized path integral and
the action

The partition function for the effective mass Hamiltonian,
equation (1), can be written as an imaginary time path
integral [14–16],

Z =
∫

DR(τ )e− 1
h̄ SE[R(τ )]. (A.1)

The path integral
∫ DR(τ ) and Euclidean action SE are easiest

to define in the discretized form we used in the Monte Carlo
integration. By dividing imaginary time into NT discrete steps,
each of length �τ = βh̄/NT , the path R(τ ) becomes an array
of positions (‘beads’) ri j , where i indicates the slice number
(0 � i < NT ) and j = 1, 2 labels the two electrons. Then
the path integral becomes a multiple integral over all bead
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positions,

∫
DR(τ ) →

NT −1∏

i=0

∫
dr1 j

∫
dr2 j . (A.2)

The action SE represents the terms in the effective mass
Hamiltonian and is a function of the bead coordinates,

SE =
NT −1∑

i=0

[
m∗|ri+1 1 − ri 1|2

2 �τ
+ m∗|ri+1 2 − ri 2|2

2 �τ

+ 2 ln(2π�τ/m∗) + Vext(ri 1)�τ + Vext(ri 2)�τ

+ ucoul(ri+1 1, ri+1 2, ri,1, ri,2; �τ)

]
. (A.3)

The first three terms (which explicitly contain m∗) are the
kinetic action and are derived from the free particle propagator
in two dimensions. The next two terms are the action for
the confining potential, Vext(r), evaluated in the primitive
approximation [16]. The last term is the pair Coulomb
action [16], which we have fit to a short time approximation
of the Coulomb propagator for the imaginary time interval
�τ . Because of special symmetry of the Coulomb potential,
this propagator is only a function of two coordinates, qi =
(|ri+1 1 − ri+1 2| + |ri 1 − ri 2|)/2 and s2

i = |(ri+1 1 −
ri+1 2) − (ri 1 − ri 2)|2. For simplicity, we have dropped the
s2 dependence; this approximation is exact as �τ → 0. We
evaluated the short time Coulomb propagator using the high-
accuracy Trotter method of [19] and stored tabulated values
of ucoul(q; �τ) on a grid for efficient evaluation during our
Monte Carlo simulations.

To perform the trace implicit in equation (A.1), we identify
slice NT with slice 0 in equation (A.3) by setting rNT 1 = r0 1

and rNT 2 = r0 2. The division of the partition function into
spatially symmetric Z+ and antisymmetric Z− parts may be

accomplished by summing over permutations P = I,P , as in
equation (3). Permuting configurations (P = P) are handled
by setting rNT 1 = r0 2 and rNT 2 = r0 1 in equation (A.3).
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